首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   652篇
  免费   62篇
  2021年   5篇
  2020年   5篇
  2019年   8篇
  2018年   4篇
  2017年   5篇
  2016年   12篇
  2015年   28篇
  2014年   20篇
  2013年   37篇
  2012年   35篇
  2011年   37篇
  2010年   24篇
  2009年   21篇
  2008年   32篇
  2007年   30篇
  2006年   28篇
  2005年   47篇
  2004年   28篇
  2003年   30篇
  2002年   20篇
  2001年   8篇
  2000年   9篇
  1999年   9篇
  1998年   13篇
  1997年   6篇
  1996年   4篇
  1995年   9篇
  1994年   10篇
  1993年   18篇
  1992年   12篇
  1991年   14篇
  1990年   14篇
  1989年   20篇
  1988年   7篇
  1987年   7篇
  1986年   7篇
  1985年   7篇
  1984年   7篇
  1983年   4篇
  1982年   4篇
  1981年   6篇
  1980年   7篇
  1979年   7篇
  1977年   5篇
  1976年   4篇
  1973年   3篇
  1972年   3篇
  1971年   5篇
  1963年   4篇
  1962年   3篇
排序方式: 共有714条查询结果,搜索用时 465 毫秒
71.
72.
Sulfatides show structural, and possibly physiological similarities to gangliosides. Kidney dysfunction might be correlated with changes in sulfatides, the major acidic glycosphingolipids in this organ. To elucidate their in vivo metabolic pathway these compounds were analyzed in mice afflicted with inherited glycosphingolipid disorders. The mice under study lacked the genes encoding either beta-hexosaminidase alpha-subunit (Hexa-/-), the beta-hexosaminidase beta-subunit (Hexb-/-), both beta-hexosaminidase alpha and beta-subunits (Hexa-/- and Hexb-/-), GD3 synthase (GD3S-/-), GD3 synthase and GalNAc transferase (GD3S-/- and GalNAcT-/-), GM2 activator protein (Gm2a-/-), or arylsulfatase A (ASA-/-). Quantification of the sulfatides, I(3)SO(3)(-)-GalCer (SM4s), II(3)SO(3)(-)-LacCer (SM3), II(3)SO(3)(-)-Gg(3)Cer (SM2a), and IV(3,) II(3)-(SO(3)(-))(2)-Gg(4)Cer (SB1a), was performed by nano-electrospray tandem mass spectrometry. We conclude for the in vivo situation in mouse kidneys that: 1) a single enzyme (GalNAc transferase) is responsible for the synthesis of SM2a and GM2 from SM3 and GM3, respectively. 2) In analogy to GD1a, SB1a is degraded via SM2a. 3) SM2a is hydrolyzed to SM3 by beta-hexosaminidase S (Hex S) and Hex A, but not Hex B. Both enzymes are supported by GM2-activator protein. 4) Arylsulfatase A is required to degrade SB1a. It is probably the sole sphingolipid-sulfatase cleaving the galactosyl-3-sulfate bond. In addition, a human Tay-Sachs patient's liver was investigated, which showed accumulation of SM2a along with GM2 storage. The different ceramide compositions of both compounds indicated they were probably derived from different cell types. These data demonstrate that in vivo the sulfatides of the ganglio-series follow the same metabolic pathways as the gangliosides with the replacement of sulfotransferases and sulfatases by sialyltransferases and sialidases. Furthermore, a novel neutral GSL, IV(6)GlcNAcbeta-Gb(4)Cer, was found to accumulate only in Hexa-/- and Hexb-/- mouse kidneys. From this we conclude that Hex S also efficiently cleaves terminal beta1-6-linked HexNAc residues from neutral GSLs in vivo.  相似文献   
73.
Siderophore-binding proteins play an essential role in the uptake of iron in many Gram-positive and Gram-negative bacteria. FhuD is an ATP-binding cassette-type (ABC-type) binding protein involved in the uptake of hydroxamate-type siderophores in Escherichia coli. Structures of FhuD complexed with the antibiotic albomycin, the fungal siderophore coprogen and the drug Desferal have been determined at high resolution by x-ray crystallography. FhuD has an unusual bilobal structure for a periplasmic ligand binding protein, with two mixed beta/alpha domains connected by a long alpha-helix. The binding site for hydroxamate-type ligands is composed of a shallow pocket that lies between these two domains. Recognition of siderophores primarily occurs through interactions between the iron-hydroxamate centers of each siderophore and the side chains of several key residues in the binding pocket. Rearrangements of side chains within the binding pocket accommodate the unique structural features of each siderophore. The backbones of the siderophores are not involved in any direct interactions with the protein, demonstrating how siderophores with considerable chemical and structural diversity can be bound by FhuD. For albomycin, which consists of an antibiotic group attached to a hydroxamate siderophore, electron density for the antibiotic portion was not observed. Therefore, this study provides a basis for the rational design of novel bacteriostatic agents, in the form of siderophore-antibiotic conjugates that can act as "Trojan horses," using the hydroxamate-type siderophore uptake system to actively deliver antibiotics directly into targeted pathogens.  相似文献   
74.
75.
Genetic variation present in 64 durum wheat accessions was investigated by using three sources of microsatellite (SSR) markers: EST-derived SSRs (EST-SSRs) and two sources of SSRs isolated from total genomic DNA. Out of 245 SSR primer pairs screened, 22 EST-SSRs and 20 genomic-derived SSRs were polymorphic and used for genotyping. The EST-SSR primers produced high quality markers, but had the lowest level of polymorphism (25%) compared to the other two sources of genomic SSR markers (53%). The 42 SSR markers detected 189 polymorphic alleles with an average number of 4.5 alleles per locus. The coefficient of similarity ranged from 0.28 to 0.70 and the estimates of similarity varied when different sources of SSR markers were used to genotype the accessions. This study showed that EST-derived SSR markers developed in bread wheat are polymorphic in durum wheat when assaying loci of the A and B genomes. A minumum of ten EST-SSRs generated a very low probability of identity (0.36×10−12) indicating that these SSRs have a very high discriminatory power. EST-SSR markers directly sample variation in transcribed regions of the genome, which may enhance their value in marker-assisted selection, comparative genetic analysis and for exploiting wheat genetic resources by providing a more-direct estimate of functional diversity. Received: 19 December 2000 / Accepted: 17 April 2001  相似文献   
76.
Centromere-specific multi-color FISH (cenM-FISH) is a new multicolor FISH technique that allows the simultaneous characterization of all human centromeres by using labeled centromeric satellite DNA as probes. This approach allows the rapid identification of all human centromeres by their individual pseudo-coloring in one single step and is therefore a powerful tool in molecular cytogenetics. CenM-FISH fills a gap in multicolor karyotyping using WCP probes and distinguishes all centromeric regions apart from the evolutionary highly conserved regions on the chromosomes 13 and 21. The usefulness of the cenM-FISH technique for the characterization of small supernumerary marker chromosomes with no (or nearly no) euchromatin and restricted amounts of available sample material is demonstrated in prenatal, postnatal, and tumor cytogenetic cases. In addition, rarely described markers with the involvement of heterochromatic material inserted into homogeneously staining regions could be identified and characterized by using the cenM-FISH technique.  相似文献   
77.
Chromosomal aberrations were comparatively assessed in nuclei extracted from synovial tissue, primary-culture (P-0) synovial cells, and early-passage synovial fibroblasts (SFB; 98% enrichment; P-1, P-4 [passage 1, passage 4]) from patients with rheumatoid arthritis (RA; n = 21), osteoarthritis (OA; n = 24), and other rheumatic diseases. Peripheral blood lymphocytes (PBL) and skin fibroblasts (FB) (P-1, P-4) from the same patients, as well as SFB from normal joints and patients with joint trauma (JT) (n = 4), were used as controls. Analyses proceeded by standard GTG-banding and interphase centromere fluorescence in situ hybridization. Structural chromosomal aberrations were observed in SFB (P-1 or P-4) from 4 of 21 RA patients (19%), with involvement of chromosome 1 [e.g. del(1)(q12)] in 3 of 4 cases. In 10 of the 21 RA cases (48%), polysomy 7 was observed in P-1 SFB. In addition, aneusomies of chromosomes 4, 6, 8, 9, 12, 18, and Y were present. The percentage of polysomies was increased in P-4. Similar chromosomal aberrations were detected in SFB of OA and spondylarthropathy patients. No aberrations were detected in i) PBL or skin FB from the same patients (except for one OA patient with a karyotype 45,X[10]/46,XX[17] in PBL and variable polysomies in long-term culture skin FB); or ii) synovial tissue and/or P-1 SFB of normal joints or of patients with joint trauma. In conclusion, qualitatively comparable chromosomal aberrations were observed in synovial tissue and early-passage SFB of patients with RA, OA, and other inflammatory joint diseases. Thus, although of possible functional relevance for the pathologic role of SFB in RA, these alterations probably reflect a common response to chronic inflammatory stress in rheumatic diseases.  相似文献   
78.
79.
Summary The FhuA protein (formerly TonA) is located in the outer membrane of Escherichia coli K12. Fusions between fhuA and phoA genes were constructed. They determined proteins containing a truncated but still active alkaline phosphatase of constant size and a variable FhuA portion which ranged from 11%–90% of the mature FhuA protein. The fusion sites were nearly randomly distributed along the FhuA protein. The FhuA segments directed the secretion of the truncated alkaline phosphatase across the cytoplasmic membrane. The fusion proteins were proteolytically degraded up to the size of alkaline phosphatase and no longer reacted with anti-FhuA antibodies. The fusion proteins were more stable in lon and pep mutants lacking cytoplasmic protease and peptidases, respectively. The larger fusion proteins above a molecular weight of 64000 dalton were predominantly found in the outer membrane fraction. They were degraded by trypsin when cells were converted to spheroplasts so that trypsin gained access to the periplasm. In contrast, FhuA protein in the outer membrane was largely resistant to trypsin. It is concluded that the larger FhuA-PhoA fusion proteins were associated with, but not properly integrated into, the outer membrane.  相似文献   
80.
A procedure for the construction of double stranded DNA microcircles is described that overcomes the natural limits of established circularization procedures. Starting with two synthetic oligonucleotides which are able to form dumbbell shaped structures, two subsequent ligation reactions yield a microcircle of double stranded DNA of 42 base pairs. This is by far the smallest circle of double stranded DNA yet described. These microcircles can be constructed in quantities required for high resolution structural analyses such as X-ray crystallography and NMR spectroscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号